
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 536

An Intrusion Tolerance Approach for Internet

Security
G.Srinivas Reddy

1
, Prof.T.Venkat Narayana Rao

2
, D V S Nagendra Kumar

3

Department of C.S.E, Mahatma Gandhi Institute of Technology, Hyderabad, A.P, India
1, 3

Department of C.S.E, Guru Nanak Institutions Technical Campus, Ibrahimpatnam, Hyderabad, A.P, India
2

ABSTRACT: The Internet has become essential to most enterprises and many private individuals. However, both network and the

computer systems connected to it are still vulnerable to attacks which are becoming more frequent than ever. To face this situation,

traditional security techniques are insufficient and fault-tolerance techniques are becoming increasingly cost-effective. Nevertheless,

intrusions are very special faults, and this has to be taken into account when selecting the fault-tolerance techniques. In classical

dependability, fault tolerance has been the workhorse of many solutions. Classical security-related has less privileged solutions with a

few exceptions towards intrusion detection and prevention. The paper focuses on the fundamental concepts fault tolerance and

security. The main strategies and mechanisms for architecting IT systems are discussed in the study along with the recent advances in

secured distributed IT system architectures.

 Keywords: Intrusion, diagnosis, policies, checksum, regime.

I. INTRODUCTION AND REVIEW

There is a significant facet of research on

distributed computing architectures, methodologies and

algorithms, both in the fields of dependability and fault

tolerance to ensure security and information assurance. A

new approach has slowly emerged during the past decade,

and gained impressive momentum recently i.e. intrusion

tolerance (IT). This relates to the notion of handling react,

counteract, recover and mask a wide set of faults

encompassing intentional and malicious faults i.e.

collectively called intrusion. This may lead to failure of the

system security properties if nothing is done to counter their

effect on the system state. In short, instead of trying to

prevent every single intrusion, but tailor the system trigger

mechanisms that prevent the intrusion from generating a

system failure. Dependability is the system property that

integrates such attributes as reliability, availability, safety,

security, survivability and maintainability.

A. Fault prevention and Fault tolerance

Fault prevention is attained by quality control

techniques employed during the design and manufacturing

of hardware and software [1]. Such techniques include

structured programming, information hiding, modularization,

etc., for software, and rigorous design rules for hardware.

Shielding, radiation hardening, etc., intend to prevent

operational physical faults, while training, rigorous

procedures for maintenance, ‘foolproof’ packages, intend to

prevent interaction faults. Firewalls and similar defences

intend to prevent malicious faults. Fault tolerance is

intended to preserve the delivery of correct service in the

presence of active faults [12]. It is generally implemented by

error detection and subsequent system recovery [5,8]. Error

detection originates an error signal or message within the

system. An error that is present but not detected is a latent

error. Concurrent error detection are pre-emptive error

detection are two classes of error detection techniques.

B. Fault handling and Fail-controlled systems

Fault handling involves four steps

- Fault diagnosis, which identifies and records the

cause(s) of error(s), in terms of both location and type,

- Fault isolation, which performs physical or logical

exclusion of the faulty components from further

participation in service delivery, i.e., it makes the fault

dormant,

- System reconfiguration, which either switches in spare

components or reassigns tasks among non-failed

components,

- System re-initialization, which checks, updates and

records the new configuration and updates system tables

and records.

Fail-controlled systems are designed and implemented so

that they fail only in specific modes of failure described in

the dependability requirement and that to an tolerable extent.

A system whose failures are, to an acceptable extent, halting

failures only is a fail-halt or fail-silent system. Some

mechanisms of error detection are directed towards both

malicious and accidental faults (for example memory access

protection techniques) and schemes have been proposed for

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 537

the tolerance of both intrusions, physical faults as well as for

tolerance of malicious logic, and more specifically of viruses,

either via control flow checking or via design diversity[13].

The section II discusses the architecture, servers and proxies

of the system. Section III discuses the implementation issues

and section IV discuses finding of the proposed system.

Section V discusses summary of work in conclusion.

II. ARCHITECTURE

The architecture, shown in Figure.. consists of a

redundant tolerance proxy bank that arbitrate requests to a

redundant application server bank, with the entire

configuration monitored by a variety of mechanisms to

ensure content integrity including intrusion-detection

systems (IDSs). The proxies and application servers are

redundant in capability but diverse in implementation, so

that they are unlikely to be simultaneously vulnerable to the

same attack. All platforms and complex interfaces within the

system are instrumented with a diversity of monitors based

on signature engines, probabilistic inference, and symptom

detection [11]. Given the reports from this monitoring

subsystem, the management function undertakes a variety of

tolerance policy responses [5-7]. Responses include

enforcing more strict agreement protocols for application

content but with a reduced system bandwidth, filtering out

requests from suspicious clients, and restarting platforms or

services that appears corrupt.

Figure 1. Schematic view of the intrusion-tolerant server architecture

A. Assumptions
It is assumed that attackers do not have physical

access to the configuration. We assume that no more than a

critical number of servers is in undetected compromised

state at any given point of time. Our agreement protocols

assume that all non-faulty and non-compromised servers

give the same answer to the same request. Thus, the

architecture is meant to provide content that is static from

the end user’s [4]. The reply to a request can be the result of

substantial computation, on a condition that the same result

be obtained by the different application servers as shown in

figure 1. Target applications include plan, catalog, and news

distribution sites. The system content can be updated

periodically, by suspending and then resuming the proxy

bank, but we do not address specific mechanisms for doing

so. Survivable storage techniques can be used in the future

to build a separate subsystem to handle write operations [9],

while retaining the current architecture for read requests.

The architecture focuses on availability and integrity, and

does not address confidentiality. Usually we do not defend

against insider threat or network flooding denial of service

attacks.

B. Architecture Components

i. Application Servers
In this architecture, the domain-specific

functionality visible to the client and is provided by a

number of application servers. These provide equivalent

services, but on diverse application software, operating

systems and platforms, so that they are unlikely to be

vulnerable to common attacks and failure modes. They

include IDS monitoring but are otherwise ordinary platforms

running diverse COTS software. In our instantiation these

servers provide Web content. For our content agreement

protocols to be practical we assume there are at least three

different application servers; a typical number would be five

or seven. However, the venture can add as many of these as

desired, increasing the overall performance and intrusion-

tolerance capabilities.

ii. Tolerance Proxies
The central components of our architecture are one

or more tolerance proxies. Proxies mediate client requests,

observe the state of the application servers and other proxies,

and dynamically adapt the system operation according to the

reports from the monitoring subsystem. One of the proxies is

designated as the leader. It is responsible for filtering,

sanitizing, and forwarding client requests to one or more

application servers, implementing a content agreement

protocol that depends on the current management, while

balancing the load. In the presence of perceived intrusions,

increasingly rigorous regimes are used to validate server

replies. The regime is selected according to a chosen policy,

depending on reports from the monitoring subsystem and on

the outcome of the agreement protocol currently in use.

Optional auxiliary proxies monitor all communication

between the proxy leader and the application servers, and are

themselves monitored by the other proxies and the sensor

subsystem . Our current design and implementation focuses

on the case of a single proxy. The tolerance proxies run only

a relatively small amount of custom software, so they are

much more agreeable to security solidification than more

complex application servers, whose security properties are

also more difficult to verify.

iii. Intrusion Detection System
The third main component of our architecture is an

intrusion-detection system (IDS), which analyzes network

traffic, the state of the servers and to report suspected

intrusions. Some IDS modules execute on one or more

dedicated hardware platforms, while others reside in the

proxies and application servers.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 538

iv. Functional Overview
When a client request arrives, the following steps

are performed:

Step 1: The proxy leader accepts the request and checks it,

filtering out malformed requests.

Step 2: The leader forwards the request, if valid, to a number

of application servers, depending on the current agreement

regime.

Step 3: The application servers process the request and

return the results to the proxy leader. If sufficient agreement

is reached, the proxy forwards the content to the client.

Step 4: The regime is adjusted according to the outcome of

the content agreement and reports from the monitoring

subsystem.

Step 5: The auxiliary proxies, if present, monitor the

transaction to ensure correct proxy leader behavior.

C. Monitoring Subsystem
The monitoring subsystem includes a diversified set

of complementary mechanisms, including the IDS. The

information collected by the monitoring subsystem is

aggregated into a global system view, used to adapt the

system configuration to respond to suspected or detected

threats and malfunctions, as described in the Section.

Diversity helps make the monitoring subsystem itself

intrusion-tolerant, since it may still be effective if some of

its components fail.

i. Intrusion Detection

Our intrusion-detection systems feature diverse

event sources, inference techniques, and detection paradigms.

They include EMERALD host, network, and protocol

monitors, as well as embedded application monitors.

Different sensors cover different portions of the detection

space, and have different detection rates, false alarm ratio

and operational conditions. Their combination allows

detecting more recognized attacks, as well as anomalies

arising from unknown ones [10]. The advantages of

heterogeneous sensors come at the cost of an increased

number of alerts. To significantly manage them, they must

be aggregated and correlated. Alert correlation can also

detect attacks consisting of multiple steps.

ii. Content Agreement

The proxy leader compares query results from

different application servers, according to the current

agreement regime, as described above. If two or more results

fail to match, this is viewed as a suspicious event, and

suspect servers are reported [3].

iii. Challenge Response Protocol

Each proxy periodically launches a challenge

response protocol to check the servers and other proxies.

This protocol serves two main purposes: It provides a

control that checks the live-ness of the servers and other

proxies. If a proxy does not receive a response within

prescribed delay after emitting a challenge, it elevate an

alarm. The protocol checks the integrity of files and

directories located on remote servers and proxies. The

integrity of application servers is also verified indirectly by

content agreement, as mentioned above [2]. However, a

resolute attacker could take control of several servers and

modify only rarely used files. The proxy could check that

each response corresponds to the specified challenge by

keeping a local copy of all sensitive files and running the

same computation as the server, but this imposes an extra

administrative and computational load on the proxy. Instead,

we can utilize the fact that servers and proxies are

periodically rebooted as a measure for software rejuvenation.

iv. Online Verifiers

As part of the design process, we express the high-

level behavior of the proxy as a reactive system that can be

formally verified. An abstraction of the system is described

using a finite-state omega-automaton and the properties of

interest are specified in temporal logic. The high-level

specifications can be formally verified using model checking.

However, this does not guarantee that the implementation

(the concrete system) meets the corresponding requirements.

To fill this gap, we introduce online verifiers, which check

that the abstract properties hold while the concrete system is

running, by matching concrete and abstract states. If an

unexpected state is reached, an alarm is raised. Only

temporal safety properties can be checked in this way,

however, the challenge response heartbeat described here

provides a complementary live-ness check. The online

verifiers are generated by annotating the proxy Java program

source. Since safeness is not guaranteed, and only high-level

properties are checked, this does not detect lower-level

faults such as buffer overflows.

D. Adaptive Response
We now describe how the system responds to state

changes reported by the monitoring subsystem described in

the previous section.

i. Agreement Regimes and Policies
The role played by the proxy leader is to manage

the redundant application servers. The proxy decides which

application servers should be used to answer each query, and

compares the results. The number of servers used trades of

system performance against confidence in the integrity of

the results. Figure 2 and 3 presents the main steps in the

content agreement protocol executed by the proxy leader.

This protocol is parameterized by an agreement regime,

which must specify, at each point in time:

- Which application servers to forward the request to.
- What constitutes sufficient agreement among the replies

which servers, if any, to report as suspicious to the

monitoring subsystems. The most important regime

should be dynamically adjusted in response to alerts, a

policy that specifies the action to take next if no

agreement is achieved, and which regime to use in

response to various events. A policy must also specify

how to respond if intrusions or other undesirable

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 539

conditions are detected, and when to return to a less

stringent agreement regime. The transition to a stricter

regime can also occur as a result of administrative

action.

Figure 2. Generic content agreement protocol

ii. Responses to Alerts
Alerts are indications of possible attacks or

compromises. Experience shows that all systems connected

to the Internet are regularly attacked, or at least probed. IDS

components generate a large number of legitimate alerts that

do not always indicate system compromise, as well as

numerous false alarms [15]. Other parts of the monitoring

subsystem generate alerts as well: the content agreement and

challenge-response protocols provide alerts that identify

likely compromises. Although alerts can arise from direct

detection of an attack, many report symptoms of a

compromise that has already occurred [10]. While attack

detection usually indicates only the possibility of a

compromise, symptom detection can reliably recognize a

compromise after it has occurred.

iii. Multi-proxy Protocols
Our implementation has focused on detection and

response protocols for multiple application servers mediated

by a single leader proxy, and no auxiliary ones. However,

we are developing the general case, where redundant proxies

mitigate the weakness presented by the leader as a single

point of failure. Our multiproxy design includes three

proxies and is intended to tolerate the compromise or failure

of one of them. Proxies communicate with each other via a

multicast channel implemented using a local Ethernet link as

shown in figure. The decision to expel a proxy leader or

auxiliary requires unanimity between the two others. If they

do not agree, the accuser is suspect but not immediately shut

down [11]. After a delay, the accuser may persist and

reinitiate the expel protocol. After a fixed number of “false

accusations, the accuser is itself considered faulty and

restarted. This reduces the risk of prematurely removing a

non-compromised proxy that has accused another by

mistake.

III. IMPLEMENTATION

The local support dimension of the architecture

consists essentially of the operating system augmented with

appropriate extensions. We have adopted Java as a platform-

independent and object-oriented programming environment

thus our middleware, service and application software

modules are constructed to run on the Java virtual Machine

(JVM) run-time environment. The run-time support thus

includes abstractions of typical local platform services such

as process execution, inter-process communication, access to

local persistent storage, and protocol management [15]. Our

instantiation of the architecture provides intrusion tolerant

Web services. The Web servers used are Apache 1.5,

Microsoft IIS 5.0 running under MS Windows 2000. Figure

3 shows the main components of our proxy implementation.

The regime manager is responsible for executing the content

agreement protocol.

A. Monitoring Subsystem

The implemented monitoring subsystem includes a

variety of intrusion detection sensors and alert correlation

engines, as follows:

- Network-based sensors detect a variety of network

attacks and probes in real time. These sensors run on a

dedicated machine that monitors the traffic between the

clients and the proxy, and the private subnet between

the proxy and the application server bank.

Figure 3. High-level view of proxy implementation

eXpert-Net is a suite of network-based sensors,

each of which focuses on a specific network protocol. It

features an attack knowledge base and inference engine

developed using a forward-chaining rule-based system

generator, P-BEST. eXpert-Net can detect complex attacks

and variations of known attacks. For example, by

performing session and transaction reconstruction, eXpert-

HTTP, a sensor for monitoring Web traffic, detects attacks

that would be missed if the analysis were performed on a

per-packet basis [14].

B. Content Agreement using MD5 Checksums

A basic function performed by the proxy is

checking that the pages returned by two or more application

servers match. To improve the efficiency of this process, we

use MD5 checksums, which the servers compute for each

page served [13]. These checksums are cryptographically

strong: producing a fake page that matches a given MD5

checksum is an intractable problem given the current and

foreseeable state of the art. When comparing content from

several servers, only the MD5 checksums need to be

retrieved from all but one, which is queried for both

checksum and content. The proxy verifies that the

checksums match; if so, it also verifies that the received

content matches the common MD5.This has the following

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 540

advantages: Internal network bandwidth and proxy memory

requirements are reduced

- When querying multiple servers, it is more efficient to

compare the checksums than the full n pages; verifying

a single MD5 is relatively inexpensive (linear-time in

page size)

- The leader proxy can keep a cache of checksums, to be

checked when lower agreement regimes are used. If

cache hits occur, the proxy can operate at a higher

assurance level despite using fewer application servers

for content.

C. Policy Implementation

Our implementation supports a variety of policies

based on a generalization of the simple agreement regimes.

In general, each regime is specified by a pair (n, k), where n

is the number of servers to query, and k is the minimum

number of servers that yield sufficient agreement in that

regime [14]. The client request is forwarded to n servers, and

a response is considered correct if there is agreement

between k of them; otherwise, the function  is used to

identify a new pair (n
1
; k

1
), which dictates the new regime,

querying n
1
 – n extra servers. This is repeated until

satisfactory agreement is obtained, or the panic state is

reached, in which case the system is considered too

corrupted to function. The alert manager is notified of the

content agreement results. Implemented policies can range

from efficiency-conscious ones that initially ask only a few

servers and query one additional server when needed, to

integrity-conscious ones that query more servers initially

and immediately query all servers when in doubt.

IV. RESULTS AND CONCLUSION

Our intrusion-tolerant architecture combines a

variety of traditional security mechanisms, as well as

concepts from fault tolerance and formal verification. The

figures 4. and 4.a to 4.l clearly summarizes these

mechanisms, and the protective functions they play and

outcomes in terms of snapshots which include activities and

results pertaining to proxies , attacks ,clients and cache

states etc.

Snapshots

Figure 4. Running rmi registry

Figure 4. shows rmi registry at port number 6000.

Figure 4a. Proxyserver1 initialization

Figure 4a. shows the initialization of proxyserver1, it is

listening at port number 6000.

Figure 4b. Proxyserver2 initialization

Figure 4b. shows the initialization of proxyserver2, it is

listening at Port number 6000.

Figure 4c. State of proxyserver1

Figure 4c. shows the information available at proxyserver1

regarding service1 invocation by client1.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 541

Figure 4d. Running client2 for string reverse service

Figure 4d. depicts the result of service3 (string reverse)

provided to client2. The service is provided by any of the

three proxies, which are listening for client requests. Here

we are assuming that all proxies are functioning properly

(i.e., None of the proxies are attacked).

Figure 4e. State of backup server

Figure 4e. shows the outcome available at backup server for

service3. When majority of the proxies functioning properly

the service is provided by any one the proxy server.

Figure 4f. State of Proxyserver2

Figure 4f. shows the information available at proxyserver2

regarding service3 invocation by client2

Figure 4g. Attack on proxyserver1 for service1

Figure 4g. shows the attack on proxyserver1 on servive1. If

the clients, for service1, make any requests proxyserver1

may not generate the correct result.

Figure 4h. Attack on proxyserver2 for service1

Figure 4h. shows the attack on proxyserver2 on servive1. If

the clients, for service1, make any requests proxyserver2

may not generate the correct result.

Figure 4i. Running client1 for service1

Figure 4i. Shows the result of services to client1. Here the

service is provided by backend server (i.e., Cached Service),

because among three servers two of them are already under

the attack. When the result is generated by proxyserver1,

proxyserver2, and proxyserver3 it will be compared with

result available with cached service. Here in the above

situation majority for the correct result is less than the

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 542

required one. So the result available with backend server

will be served to the client.

Figure 4j. State of the Cached service

Figure 4j. depicts that the result is sent from cached server

not from the proxies.

Figure 4k. Repair proxyserver1 for Service1

Figure 4k. shows the repair made to the proxyserver1 for

service1. Now proxyserver1 is ready to generate correct

results.

Figure 4l. State of the backup server

Figure 4l. shows that the service is provided by the

controller not by the backup server. Below diagram shows

that the result generated by proxyserver1. The result

available with proxyserver1 is correct.

V. CONCLUSION

The proposed system is adaptive, responding to alerts and

intrusions, trading off performance against confidence in the

integrity of the results. Our architecture allows a wide

variety of response policies to be implemented, depending

on the environmental assumptions and with cost-benefit

analysis. We have presented an overview of the main

concepts and design principles relevant to intrusion tolerant

architectures. Given the current rate of attacks on Internet,

and the large number of vulnerabilities in contemporary

computing systems, intrusion tolerance appears to be a

promising technique to implement more secure applications,

particularly with diversified hardware and software

platforms. There is a price to pay, since it is expensive to

support multiple heterogeneous systems. However, this is

probably the price that must be paid for security in an open,

and in a uncertain world.

REFERENCES

1. M. Almgren and U. Lindqvist. Application-

integrated data collection for security monitoring. In Recent

Advances in Intrusion Detection (RAID 2001), volume 2212

of LNCS, pages 22{36. Springer-Verlag, Oct. 2001.

2. D. Curry and H. Debar. Intrusion detection message

exchange format: Data model and extensible markup

language (XML) document type definition, Nov. 2001.

Work in progress.

3. Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion

tolerance in distributed computing systems. In Proc. Intl.

Symposium on Security and Privacy, pages 110{121. IEEE

press, May 1991.

4. G. J. Holzmann. Design and Validation of

Computer Protocols. Prentice Hall, Engelwood Cli_s, NJ,

1991.

5. Y. Huang, C. Kintala, N. Kolettis, and N. Fulton.

Software rejuvenation: Analysis, module and applications.

In 25th Symposium on Fault Tolerant Computing, pages

381{390. IEEE Computer Society Press, June 1995.

6. Real Secure server sensor policy guide version 6.0,

May 2001. http://www.iss.net.

7. U. Lindqvist and P. Porras. Detecting computer and

network misuse through the production-based expert system

toolset (P-BEST). In Proceedings of the 1999 IEEE

Symposium on Security and Privacy, pages 146{161. IEEE

press, May 1999.

8. U. Lindqvist and P. Porras. eXpert-BSM: A host-

based intrusion detection solution for Sun Solaris. In Proc.

of the 17th Annual Computer Security Applications

Conference, Dec. 2001.

9. P. Liu and S. Jajodia. Multi-phase damage

con_nement in database systems for intrusion tolerance. In

Proc. 14th IEEE Computer Security Foundations Workshop,

pages 191{205, June 2001.

http://www.ijarcce.com/
http://www.iss.net/

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 543

10. R. Permeh and M. Mai_ret. .ida \Code Red" worm.

Security Advisory AL20010717, eEye Digital Security,

July 2001. http://www.eeye.com/html/

Research/Advisories/AL20010717.html.

11. P. Porras. Mission-based correlation. Personal

communication, SRI International, 2001. P. Porras and P.

Neumann. EMERALD: Event Monitoring Enabling

Responses to Anomalous Live Disturbances. In National

Information Security Conference, Oct. 1997.

12. P. Porras and A. Valdes. Live traffic analysis of

TCP/IP gateways. In Proc. Symposium on Network and

Distributed System Security. Internet Society, Mar. 1998.

13. G. R. Ranger, P. K. Khosla, M. Bakkaloglu, M. W.

Bigrigg, G. R. Goodson, S. Oguz, V. Pandurangan, C. A. N.

Soules, J. D. Strunk, and J. J. Wylie. Survivable storage

systems. In DARPA Information Survivability Conference

and Exposition II, pages 184{195. IEEE Computer Society,

June 2001.

14. R. Rivest. The MD5 message digest algorithm.

Internet Engineering Task Force, RFC 1321, Apr. 1992.

15. L. Rodrigues and P. Verissimo. xAMp: a multi-

primitive group communications service. In 11th

Symposium on Reliable Distributed Systems, pages

112{121, Oct. 1992.

Biography

 G. Srinivas Reddy, received M.Sc. in

Applied Electronics from Osmania University,

Hyderabad, India, holds a M.Tech in

Computer Science from Jawaharlal Nehru

Technological University, Hyderabad, A.P.,

India. He has 9 years of experience in teaching at various

Engineering Colleges. He is presently Assistant Professor at

Mahatma Gandhi Institute of Technology, Hyderabad, A.P,

INDIA. He is currently working on research areas which

include Digital Image Processing, Digital Watermarking,

Data Mining, Network Security and other Emerging areas of

Information Technology. He is pursuing Ph.D.

Professor T.Venkat Narayana Rao,

received B.E in Computer Technology and

Engineering from Nagpur University,

Nagpur, India, M.B.A (Systems), holds a

M.Tech in Computer Science from

Jawaharlal Nehru Technological University, Hyderabad,

A.P., India and a Research Scholar in JNTU. He has 21

years of vast experience in Computer Science and

Engineering areas pertaining to academics and industry

related I.T issues. He is presently Professor, Department of

Computer Science and Engineering, Guru Nanak Institutions

Technical Campus, Ibrahimpatnam, R.R.Dist., A.P, INDIA.

He is nominated as Editor and Reviewer to 27 International

journals relating to Computer Science and Information

Technology. He is currently working on research areas

which include Digital Image Processing, Digital

Watermarking, Data Mining, Network Security and other

Emerging areas of Information Technology.

D.V.S. Nagendra Kumar received his B.Tech, and M.Tech

in Electronics and Communication

Engineering from JNTU Hyderabad, A.P.,

India. He has taught at UG and PG level in

various Engineering Colleges. He is

presently Assistant Professor at Mahatma

Gandhi Institute of Technology, Hyderabad,

A.P, INDIA. He is currently working on research areas

which include Digital Image Processing, VLSI Design and

Radar signal processing.

http://www.ijarcce.com/
http://www.eeye.com/html/

